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A comparison is made between a number of properties of a quasi-homogeneous 
isotropic turbulent field obtained from a direct numerical simulation of the 
Navier-Stokes equation and its random counterpart with the same energy spectrum. 
It is demonstrated that some effects in a real flow have a considerable contribution 
of a kinematic nature (e.g. rednction of nonlinearity). while others are mostly 
dynamical (e.g. alignment between vortioity and eigenvectors of the rate of strain). 

1. Introduction 
Turbulent flows are believed to be governed by the Navier-Stokes equations. On 

the other hand one of the basic features of turbulent flows is their (apparent) 
randomness or stochasticity. This last property is considered to be a direct 
consequence o f  the nature of  attractors of NavieAtokes equations (e.g. Landau & 
Lifshitz 1987, pp. 108-129; Monin 1986; George 1990; Frisch & Orszag 1990) a t  high 
Reynolds number. It is natural to  ask what are the differences between turbulent 
flows and other chaotic phenomena such as kinematic (Lagrangian) chaos (Aref 1990) 
or simply random Gaussian processes. The importance of this question is two-fold. 
From the basic point of view it is of interest since most theories (models) do not make 
a direct appeals the Navier-Stokes equations, e.g. the most popular k-g theories or 
a variety models of intermittency (Hosokawa 1990 ; Sreenivasan 1991 and references 
therein). Secondly, the question is of importance in the context of kinematical 
simulations of turbulent flows for various practical purposes (Fung et ul. 1992 and 
references therein). 

There is much in common between turbulent flow fields and Gaussian random 
processes, e.g. the one-point distribution of the velocity field is nearly Gaussian. 
However, the velocity derivatives, etc. appear to be essentially different from 
Gaussian, e.g. the prevalence of exponential probability density distributions 
(Narasimha 1990; Gagne 1991 and references therein). Therefore, comparing real 
turbulent flows with the Gaussian counterparts may be extremely useful in 
elucidating the characteristic dynamic properties of Navier-Stokes turbulence 
versus those - we call them kinematic -which are common to both Navier-Stokes 
turbulence and its Gaussian counterpart. Kraichnan & Panda (1988) started this 
kind of comparison and showed that the mean square of the total nonlinear term in 
homogeneous Navier-Stokes equation turbulence is 0.57 of its Gaussian counterpart 
and Chen et aZ. (1989) have shown that this reduction happened mostly in the high- 
wavenumber region of the spectrum (see also Herring & Kerr 1989). Shtilman & 
Polif'ke (1989) have shown that the Lamb vector (vorticity velocity cross-product) 
contains a large potential part. It appears that  the kinematics has a large 



66 L.  Shtilman, M.  Spector and A .  Tsinober 

contribution to this effect, since this is also a property of a random Gaussian 
solenoidal field (Shtilman & Polifke 1989; Tsinober 1990 and see below). 

It has been found recently that there exist several alignments in homogeneous 
turbulence. Ashurst et al. (1987b) discovered the alignment of vorticity oi with the 
eigenvectors e! of the rate-of-strain tensor SS, especially with the intermediate one. 
Ashurst et al. ( 1 9 8 7 ~ )  have also found that the gradient of the pressure exhibits a 
tendency to align with the largest compressive eigenvector of the rate-of-strain 
tensor. Several authors have found some tendency for alignment of vorticity wi and 
velocity ui vectors (e.g. Shtilman, Pelz & Tsinober 1988 and references therein; 
Herring & MBtais 1989; Polifke 1991): Shtilman & Polifke (1989) found a strong 
tendency for alignment between the Lamb vector hi = etjk wj uk and its potential 
part;  finally Tsinober, Kit & Dracos (1991, 1992) introduced an angle between 
vorticity and the vortex stretching vector W, = w,S, which appeared to have a 
st.rong tendency for alignment in the strict sense. Though it is tempting to consider 
the above alignments as a manifestation of coherence, i.e. to see the alignments as 
purely dynamical effects, it will be shown below that some of them are mostly of a 
kinematic nature. 

This note is an attempt to get an idea about the contribution of kinematical and 
dynamical effects to  some of the observed properties of quasi-homogeneous and 
isotropic turbulent flows. This has been done via comparison of these for two fields : 
one obtained from direct numerical simulations and the other one being its random 
counterpart with the same energy spectrum or with analytical calculations for a 
random Gaussian field. 

2. Results 
We have used the data of Polifke & Shtilman (1989) from direct numerical 

simulations of the incompressible Navier-Stokes equation together with those 
obtained from a random counterpart of the Navier-Stokes equation simulation. 
These simulations are based on a pseudospectral code with resolution 64 x 64 x 64 
and details of simulations as well as the procedure for creation of the random 
counterpart are given in Appendix A. The details of theoretical calculations covering 
the calculation of probability density functions of several quantities, like d, wi Sij w j ,  
etc. for a solenoidal Gaussian field are given in Appendix B. 

2.1. Dissipation, enstrophy and enstrophy generation 
First we note that the y-1 singularity in the P4 probability distribution function 
(PDF), for example of is a purely kinematic effect as can be seen from 
(B 16). It is noteworthy that PDFs for dissipation and enstrophy of a Gaussian field 
do not have the singularity and are different, as is seen from (B 14) (B 15). In figure 1 
we present all three PDFs for a Gaussian field. These PDFs from Navier-Stokes 
simulations are shown in figure 2 and exhibit very similar behaviour. I n  particular 
the PDFs show that there is a greater probability of finding very small or very large 
values of enstrophy than the corresponding values of dissipation, implying that 
kinematical effects can made a greater contribution to stronger intermittency of 
vorticity than of dissipation. A simple demonstration of the difference between a 
random field and the Navier-Stokes simulated one is seen on the histograms in figure 
3(a ,  b )  where enstrophy is plotted versus dissipation and vice versa for the 
Navier-Stokes simulated field. The same plots for a random field are just flat as also 
follows from calculations for a Gaussian field (see Appendix B). The PDF of the 
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FIGURE 1. Normalized PDFs of 1 5 ( a ~ , / a r , ) ~ ,  id and dissipation SL,St3 for a Gaussian velocity 
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FIUTJRE 2. Same as figure 1 for Navier-St,okes simulation. 

enstrophy generation w i w j S s j  are shown in figure 4. The essential difference is that 
the PDF for the Navier--Stokes simulated field is not symmetric as a result of a net 
positive enstrophy generation. This last effect can be seen much better in figure 5 
showing the PDF of the cosine of the angle between vorticity wd and the vortex 
stretching vector W, = wiSij .  One can easily observe the essential difference between 
the Navier-Stokes simulated case and the Gaussian one calculated from (B 19). 
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FIGURE 3. Histogram of (a) enstrophy versus dissipation and 
( b )  vice versa for Navier-Stokes simulation. 

Qualitatively similar results have been obtained in laboratory experiments by 
Tsinober et al. (1991). We conclude that strict alignment between w and W is an 
essentially dynamical effect. A histogram of enstrophy versus enstrophy generation 
for the Navier-Stokes simulated case (figure 6) again shows a qualitative difference 
with the case of a random field in which the histogram is flat. The plot is skewed to  
the left as a result of a net positive enstrophy generation. 

2.2. Alignments of vorticity and pressure gradient with eigenvectors of the 
rate-of-strain tensor 

It is straightforward to show that the PDPs of the cosine of the angle between 
vorticity and the eigenvectors of the strain-rate tensor for the Gaussian field are flat 
(see Appendix B). The same is true for the random counterpart field. One easily 
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FIGURE 5. PDFs of the cosine of the angle between vorticity and the vortex stretching vector: 
Navier-Stokes simulat,iori compared to Gaussian field. 

concludes that these kind of alignments are essentially dynamical effects. Similarly 
the alignment between the pressure gradient and the eigenvectors of the, rate-of- 
strain tensor is a dynamical effect too. We obtained the same results for these 
alignments as Ashurst et al. (1987a, b), She, Jackson & Orszag (1990) and Vincent & 
Meneguzzi (1991). The most prominent is the strong tendency for alignment between 
vorticity and the intermediate eigenvector of the rate-of-strain tensor. 
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FIGURE 6. Histogram of enstrophy versw enstrophy generation for a Navier-Stokes simulation. 
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FIGURE 7 .  PDF of the cosine of the angle between the Lamb vector and 
the largest Compressive rate of Ytrain a3. 

2.3. Alignments of the Lamb vector o x v ,  pressure gradient and the eigenvectors of 
the rate-of-strain tensor 

There is a tendency of alignment between the Lamb vector arid the largest 
compressive strain for the Navier-Stokes simulated field. It is for this reason that the 
velocity vector is mostly located in the plane formed by two other eigenvectors (Shc 
et al. 1990). However, the conclusion that the results shown in figure 7 (for the 
Navier-Stokes simulated case) provide a dynamical explanation of the reduction of 
nonlinearity, i.e. reduction of the solenoidal part of Lamb vector, is not completely 
true for the following reason. Let us look at the PDF of the cosine of the angle 
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FIGURE 8. PDF of the cosine of the angle between the Lamb vector and its potential part (i.e. 
pressure gradient) : (a) Navier-Stokes simulation, ( b )  Gaussian (random counterpart). 

between the Lamb vector and its potential part, which is identical to the pressure 
gradient for the case of homogeneous flow (figure 8). One can see from figure 8 that 
most of the alignment between the two is a purely kinematic effect - though in the 
real flow i t  is somewhat stronger. 

2.4. A lignmen,t between velocity and vorticity 
The effect is purely dynamical since the PDF of the cosine of the  angle between 
velocity and vorticity is flat for a Gaussian field as well as for the random counterpart 
field. 
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3. Concluding remarks 
Among t h e  properties of homogeneous turbulent flows there are home that have a 

considerable contribution of a kinematic nature. i.e. very similar to those of random 
Gaussian fields. One prominent example is the alignment between the Lamb vector 
and the pressure gradient leading to considerable reduction of nonlinearity. On the 
other hand enstrophy generation and alignment between vorticity and the 
eigenvectors of the rate of strain are essentially dynamical effects which are not 
present in random Gaussian fields at all. The cmmparison made above indicates that 
kinematical effects can be important for the dynamics of turbulent flows and that 
care is necessary to distinguish between the two. 

We would likc to thank lh Y .  Murakami for his help in developing the numerical 
procedure used in the creation of random fields. This work was performed under 
partial support, of US Department of Energy Grant No. DE-FG0288ER13837. All 
computations were performed at  Lawrence Livermore National Laboratory. 

Appendix A 
The Navier--~St,okes eyuat,ion has been solved by a pseudospectral method. The 

periodic boundary conditions and the slave-frog second-order scheme have been used 
for the time stepping. The resolution LV = 643 and the octapentagonal dealiasing 
method was adopted. The initial spectrum was narrow banded. We have used a field 
obtained from forced turbulence simulations similar to those made by Shtilman & 
Polifke (1989) for decaying turbulence. The forcing in E-space is &correlated and has 
a k5 envelope. This field corresponds to  a statist.ically steady state of the numerical 
turbulence with v = 0.015 and a time-independent and spatially random forcing 
exerted at large scales (3 < Ic < 4) a t  each step. The field was obtained after around 
six turnover times (1000 time steps with At = 0.004) thus assuring independence of 
initial conditions. The helicity injected by force has not] been controlled since it has 
been shown by Polifke (1991) that only a very high (actually art,ificial) level of 
helicity will affect the flow. The characteristic parameters of the turbulent field are: 
total energy E(t )  = 1.29, total enstrophy Q ( t )  = 35.0, mean helicity H ( t )  = 0.79, 
the Taylor microscale Reynolds number, R, = ( Y ) i E ( t ) / [  v(Q(t))$] = 26.5, turnover 
time 7 = (;EJE-~E(JC) dlc/($E)t = 0.7, the skewness of the x-derivative of the 
u-component) S = - ( ( a ~ / a x ) ~ ) / ( ( ( a u / a x ) ” > ) i  = 0.52, and the flatness of the 
x-derivative of the u-component F = ((au/ax)4)/((au/az)z)2 = 4.2. All scales have 
been fully resolved. 

The random field that we have used for comparison with the results of the direct 
numerical simulations have the same energy and helicity spectra as the original 
field. The field was generated in the following way. As a result of incompressibility, 
k .  Re v(k) = k .  Im v(k) = 0, where Re u(k) and I m  v(k) are, respectively, the real 
and the imaginary parts of the velocity field in Fourier space. Thus we have four 
degrees of freedom for each mode. The energy conservation law leads to E(kj  = 
!j lu(k)l2 = +[(Re v(k))’+ (Im ~ ( k ) ) ~ ]  = constant (i.e. E’(k)  = E ( k ) ) .  This restriction 
reduces the number of degrees of freedom to three, essentially three phases, that can 
be varied at  will, while lu(k)l is invariant. We also conserve the helicity spectra, i.e. 
we preserve t.he angle $(k) between the real and imaginary parts of v(k) ,  but, rotate 
this pair in a uniformly random way in all directions [0--27c) in the plane per- 
pendicular to the vector k .  Clearly this procedure preserves both energy E ( k )  and 
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helicity H ( k ) .  More details on the matching of helicity and energy spectra of a 
random field with those from numerical simulations can be found in Murakami, 
Shtilman & Levich (1992). 

Appendix B 
We consider probability distribution functions (PDFs) of' some quantities 

depending on the velocity and its derivatives under the assumption that the velocity 
field is random homogeneous isotropic and Gaussian. The latter means that the 
probability density of some configuration v k  is 

where vpk is the Fourier amplitude of the Pth velocity component and v& = 

following form : 
It is well known that for a homogeneous and isotropic field the matrix TDF has the 

2 

The inverse matrix qj, defines the spectral density of the field v :  

(B 3) 
("al, upw) = Tjk(k) 6(k - k' ) ,  

To avoid dealing with singular matrices we introduced a longitudinal correlator p( k )  
as well. For incompressible flow p ( k )  will be put equal to zero. The spectral densit,y 
o f w = V x v a n d O = V * v c a n  bewritten: 

( W P ~ W ~ ' ~ )  =$k2G(k)  6(k+k'), (Ok@k,) =,U(k)6(k+Ic ' ) ,  

so that 

(v') = d3k(G(k)+p(k)); (u2)  = k 2 G ( k ) d 3 k ;  (6'} = k2p(k)dak. s s s 
y(*) = J b O p k  b(") k v dk 

I n  order to find the joint PDF for some set of L quantities 

(B 4) 

which are linear in v ,  one has t o  calculate to following functional integral 

where Q is defined in (B 1) .  

rewrite P{y"} in the following form : 
Using the standard representation for a &-function, S(y) = (l/2n) dqeiqy, one can 

(B 5 )  
1 

P ~ I " >  = (271.)~ 511 dq eiqmyn jDuk exp { -PI ( 5Dvk Q ) ' ,  
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F = d3k(988'(k) v,v$,+iq, bF(k) 'up,). s 
The functional integral in (B 5) can be calculated in the same way as is done for usual 
Gaussian integrals. This is done by shifting the variables of integration 

upI, = vb") + upk, 

where vlp,' define the extremal of functional F :  
Tflr u x )  + iq, bF(k) = 0. 

In  this way the terms linear in uPa are eliminated and the functional F takes the 
following form : 

F = - d3kl)p u;, UP;, -+J, qnL r i  1 jf 1 6, * n  bpi m d3k. 
2 's s 

Subsequent functional integration in (B 5) with respect to variables ZL~, gives a factor 
which is exactly cancelled by denominator in (€3 5 )  resulting in the following 
expression for the PDF : 

(B 7) 
1 

P{Y n 1 - - ~ (Zn)L  da exp iiqn yn - &n qm An,} 3 

where 
A,, = [d3kTj; , (k)  b;n(k)  bF(k) .  

So, to find the joint PDF for the s& of quantities yn, linearly depending on v, one has 
to determine the coefficients b,"(k) in (B4)  to find the matrix A,, using the 
correlation function T-' (B 3) and to  calculate the integral (B 7)  which is Gaussian 
again (note that the latter is a usual, i.e. non-functional, integral). 

We start now with the calculation of the joint) PDF of vorticity components 

and the components of the rate-of-strain tensor Sik = (&ii/axk) + (awk/i3xi). It is 
convenient to  introduce the following quantities as independent variables charac- 
terizing the matrix S :  

s, = S,,, s2 = &,,, s, = S,,, 
and another two combinations of diagonal matrix elements 'orthogonal' to 8 :  

the trace 0 = isii = div u 

so that the dissipation is 
5 

= idij sij = c s; + 882. 
1 

The corresponding values of bF(k) (n = 1,2, . . . ,9) in (B 4) are given by 

b p ) ( k )  = ik,e,p,eik'ro, b p ) ( k )  = i(kul Spa, + kal 6p,p) eik.ro. 
Here a = 1 ,  2 ,  3 and a,, a, are indices complementary to a,  

i 
2/3  

bp) (k )  = i(k,Sl,+k,d2fl)eik~r~, bf5)(k) = -((k,S,fl+k,S2p-2kzS,,)eik.r~ 
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and b f ) ( k )  = ihpeik.ro. The subsequent calculation of the matrix A,, shows that it is 
diagonal, resulting in factorization of the joint PDF 

Pg(wa, S i ,  6 )  = p1(')'5(*si)P3(wi), 

where P,(B) = (21~(6~))-4exp ( $)) (B 10) 

(remembering that 0 = div u = +Tr g), 
Ps(si) = rZn(g(w') +&(O'))]-~exp{ -$(xs;)/(i(o~~) +h(P))}, (B 11) 

In the same way it can be shown that the velocity field with the PDF 

does not correlate either with vorticity wi or with Sij. Note that this is true only for 
one-point PDFs. If different spatial points are considered the correlations between vt, 

and S, generally do not vanish. Now we shall consider only incompressible flows 

divu E 0, (6') = 0, so thatP,(6) = 6(B) 

and the dispersion in the PDF Pb (R 13) reduces simply to +(to2). The PDF for 
enstrophy w2 and dissipation e can now be obtained by integration of (B 11) and 
(B 12) over spatial angles in five-dimensional (for e) and three-dimensional (for w')  
space, resulting in 

The averages coincide: (y) = { z )  = ( w ' ) .  
For comparison we also present the PDF of (au,/ax,)': 

The distribution of cosy, where y is the angle between vorticity wi and the vector 
S,, we can be calculated directly from the integral 

P ( x  = COSY) = S ( x - ~ o s y ) ~ ~ ( w ) d s o ~ P , ( s ) d ~ ~ .  (B 17n) 

Owing to the absence of correlation between w, and 8, it is possible to direct the z- 
axis of the frame of reference along o when integrating over variables s,. Then the 
vector Si, wk has components lol(&, R,,, S a 3 )  or in terms of variables si : 

I 
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so that 
2 

cosy = --8 (s"+;+&;)-t 
4 3  

(R 17b) 

Integration of (B 17) can be performed over s3, s4 and all w using (B 11)  and (B 12). 
Introducing the spherical coordinates 

s1 = r sin 8 cos $, s2 = r sin 8 sin 9, s5 = r cos 8 

and integrating one obtains 

P ( C O S ~  = X) = 22/3(4-x2)-6. (B 18) 

It is noteworthy that by virtue of the nonlinear structure of cos y in (B 17h)  the PDF 
(B 17) is not constant even in absence of correlation between X i j  and wi. 

The PDF of enstrophy generation term SZ = wi S,i, ok can be represented only in 
integral form. It is defined as 

After integrating over all si (over s5 with the help of a &-function) and space angles 
in w-space this PDF can be reduced to the integral 

P(Q) = 
2 ( w 2 )  8 (02) w4 
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